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∆1-Pyrrolines are found in nature as biosynthetic intermediates
and as a part of pheromones, alkaloids, steroids, hemes, and
chlorophylls.1 In addition to having a wide range of biological
activities, ∆1-pyrrolines are important synthetic intermediates
because they have three contiguous stereogenic centers and one
prochiral center as part of a cyclic imine, which is amenable to
further stereoselective synthetic manipulation with nucleophiles.2

A stereoselective and efficient preparation of a general∆1-pyrroline
template would provide rapid access to a range of biologically active
natural products including the myosmines, amathaspiramides, and
kaitocephalin-type alkaloids.3 Although there have been several
reports for the synthesis of simple∆1-pyrrolines, cycloaddition
reactions of mu¨nchnones and alkenes have not been fruitful as a
synthetic method to generate these compounds.4,5 A few examples
include the use of azomethine ylides or cyclopropanes to gain access
to di- or trisubstituted∆1-pyrrolines.6 However, the primary
cycloadducts that are formed in the cycloaddition reaction with
münchnones readily eliminate carbon dioxide, resulting in the
formation of pyrroles, or isomerize to the∆2-pyrroline, resulting
in a loss of stereochemistry.5,7-9 A notable exception was reported
by Padwa and co-workers who successfully isolated and character-
ized the primary adducts from intramolecular cycloadditions of
münchnones to terminal alkenes.10 In addition, Turchi and co-
workers described the isolation of a∆1-pyrroline-5-carboxylic acid
from the intermolecular cycloaddition of 1,2-dicyanocyclobutene
to a münchnone.9 Our recently reported trimethylsilyl chloride-
mediated intermolecular 1,3-dipolar cycloaddition of an in situ
generated mu¨nchnone and imine yielded the primary imidazoline
adduct containing a four-point diversity and two new stereogenic
centers (Scheme 1).11 We report herein anexo-selective synthesis
of highly substituted∆1-pyrroline scaffolds from amino acid-derived
münchnones. After screening a variety of Lewis acids12 we found
that silver acetate successfully catalyzed the cycloaddition reaction
of azlactones with alkenes, generating∆1-pyrrolines in very good
yields without isomerization to the∆2-pyrrolines or decarboxylation
to the corresponding pyrroles.8,13

The cycloaddition reactions proceed well with electron-deficient
alkenes and 10 mol % silver acetate in THF at room temperature
to provide the highly substituted∆1-pyrrolines, often in good yields.
Only theexoadducts of the∆1-pyrrolines were observed withcis-
olefins as determined by NOE experiments and X-ray crystal-
lography12 in accordance with observations by other groups.14

However,trans-diethyl fumarate resulted in 2:1 ratio ofexo-/endo-
diastereomers (entry 4, Table 1). Diethyl fumarate and diethyl
maleate provided both a 3,4-transrelationship of the ethoxycarbonyl
groups. This is likely the result of the isomerization of the 3,4-cis-
substituted∆1-pyrroline obtained from diethyl maleate to the
thermodynamically more stable 3,4-trans product through an
intermediate enolate ion (Table 1, entry 2 versus 4).12 The exo
preference is in contrast to theendopreference observed in the
synthesis of pyrrolidines from acyclic azomethine ylides.12,13 A

notable exception to this is the ligand-inducedexo selectivity
described by Komatsu.15

Acyclic azomethine ylides have been proposed to adopt asyn
orientation in the prescence of a Lewis acid, whereas the mu¨nch-
nones are locked inanti orientation. This could be a possible basis
for obtaining opposite diastereoselectivity in the resulting product
for the same orientation of alkene.12 Electronic effects were
suggested to play a dominant role in favoring theexoproduct in
intermolecular cycloaddition reactions.10,16 Turchi and co-workers
have carried out extensive MO calculations to rationalize the
stereochemical outcome.17 AM1 calculations for additions of 1,2-
dicyanocyclobutene to mu¨nchnones indicated that the cycloaddition
is a concerted but nonsynchronous process. Semiempirical calcula-
tions have not been successful in explaining the regiochemical and

Scheme 1 . Lewis Acid-Mediated Synthesis of ∆1-Pyrrolines

Table 1. Cycloaddition with Various Alkenes

Published on Web 09/21/2004

12776 9 J. AM. CHEM. SOC. 2004 , 126, 12776-12777 10.1021/ja046149i CCC: $27.50 © 2004 American Chemical Society



stereochemical outcome of cycloadditions with mu¨nchnones.
Inspection of electrostatic isopotential surfaces, however, revealed
that theexotransition state shows attractive stabilizing interactions
between the CH-NH-CH portion of dipole and the nitrile groups.12

In fact, it was found that theexo adduct is also electrostatically
favored over theendoadduct.17 This may provide a rationale for
the formation of theexo cycloadduct with this in situ generated
münchnone-alkene cycloaddition reaction.

Efforts to introduce alkyl or aryl substituents in the 4-position
with crotonic or cinnamic esters were not successful. Electron-rich
alkenes such as vinyl trifluoroacetate were also unreactive in the
cycloaddition with mu¨nchnones under these conditions. Good yields
were obtained with benzyl and indolylmethyl substituted azlactones
(entries 7 and 8, Table 2). The 2-position on the∆1-pyrroline
scaffold is also amenable to different substituents including the
2-methyl and 2-benzyl (entries 9 and 10, Table 2). The phenyl
glycine-derived azlactone reacted with diethyl maleate to afford
the∆1-pyrroline in a modest 15% yield (entry 3, Table 1) and was
unreactive toward maleimide (entry6, Table 2).

Isomerization of the bicycliccis ∆1-pyrroline carboxylate to the
thermodymanically more stable ring-openedtrans product can be
accomplished upon exposure of the cycloadduct to mild base. Of
the various bases screened to convert1 to 11, DMAP resulted in
clean conversion and afforded a 50:50 mixture of1 and 11 in
quantitative yields. Treatment of the isolated 3,4-trans-∆1- pyrroline
methyl ester (11) with DMAP in methanol re-established the 1:1
ratio of 1 and11, indicating that the interconversion of1 and11

most likely proceeds via a common ring-opened ketene intermediate
(Scheme 2). We were successful in selectively trapping the ketene
intermediate with benzylamine to afford thetrans amide in good
yield (entry 12, Scheme 2). This selective ring-opening reaction
provides another opportunity to expand on the stereochemical
diversity of the scaffolds.

In conclusion, we have developed a diastereoselective and
efficient synthesis of highly substituted∆1-pyrroline-5-carboxylic
acid scaffolds via a silver(I)-catalyzed [3+ 2] cycloaddition
reaction. Theexo selectivity complements theendo-selective
cycloaddition of related acyclic azomethine ylides very well.
Diastereocontrol can be extended to the three stereogenic centers
by appropriate choice of substrates and isolation conditions.
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Table 2. Variation of Substituents at 2- and 5- Positions

azlactone

entry R1 R2 % yield

6 Ph Ph 0
7 Ph Bn 67
8 Ph 3-indolylmethyl 70
9 Me Me 59

10 Bn Me 75

Scheme 2 . Ring Opening and Isomerization of Cycloadducts
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